
Sociology 376  Exam 1  Spring 2013  Prof Montgomery 
 
Answer all questions.  200 points possible. 
 
1. [50 pts]  Each morning, a child decides whether or not to clean her room (so that the 
room is either clean or dirty that day).  Each evening, the child’s parent inspects the 
room.  If the room is clean, the parent doesn’t say anything to the child, and there’s a 
30% chance the child will clean her room the next morning.  If the room is dirty that day 
but was clean the day before, the parent gives the child a gentle reminder, and there’s a 
50% chance the child will clean her room the next morning.  If the room has been dirty 
for two days in a row (but clean the day before that), the parent gives the child a strong 
reminder, and there’s an 80% chance the child will clean her room the next morning.  If 
the room is dirty for 3 straight days, the parent yells at the child, and the child will clean 
her room for sure the next day. 
 
a) Can this process be specified as a Markov chain with “clean” and “dirty” as the states 
of the chain?  Explain why or why not. 
 
b) Specify this process as a Markov chain, using the smallest number of states possible.  
Give the transition diagram and transition matrix.   
 
c) If the child’s room was clean on Monday, what’s the probability it will be clean on 
Wednesday? 
 
d) Is the transition matrix primitive?  How can you determine primitivity using (only) the 
transition diagram?  Why does primitivity of the transition matrix matter? 
 
e) Over the long run, what proportion of days will the child’s room be clean?  What 
proportion of days will the parent yell at the child? 
 
2. [35 pts]  A political office can be held by either a Republican (R) or Democrat (D).  
The incumbent party (which currently holds the office) has a strong advantage.  More 
precisely, if the office is currently held by a Democrat, the next election will be won by a 
Democrat with probability 1-ε (and won by a Republican with probability ε).  If the 
office is currently held by a Republican, the next election will be won by a Republican 
with probability 1-4ε2 (and won by a Democrat with probability 4ε2).      
 
a) Over the long run, what proportion of the time is the office held by Republicans?   
 
b) Assuming ε is small, describe the qualitative behavior of the model using the 
terminology from Peyton Young (in his paper on coordination games). 
 
c) What happens when the incumbency advantage becomes so strong that ε becomes very 
very small (approaching 0)?  How is this different from the outcome when ε = 0 
precisely?  How is this related to Young’s use of “stochastic stability” to predict which 
Nash equilibrium will be played in coordination games with multiple Nash equilibria?



3. [75 pts]  Consider a Markov chain with 6 states:  an individual is either (1) taking 
introductory college courses, (2) taking advanced college courses, (3) employed without 
a college degree, (4) unemployed without a college degree, (5) employed with a college 
degree, or (6) unemployed with a college degree.  The transition matrix (specified so that 
element (i,j) is the probability of transitioning from state i to state j) is given by 
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
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3.7.0000
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005.5.00
003.7.00
04.005.1.
0003.3.4.

 

 
[NOTE: The matrix is not specified in canonical form.] 
  
a) Find the communication classes, draw the reduced transition diagram, and indicate 
whether each class is open or closed.  [HINT: It isn’t required, but it might be helpful to 
start by drawing the transition diagram.  You could find the reachability matrix (by 
inspection of the transition diagram) as an intermediate step toward the communication 
classes, or simply find these classes directly (by inspection of the transition diagram).] 
 
b) For a student taking intro courses (state 1), what is the expected time in college (i.e., 
states 1 and 2)?  For a student taking advanced classes (state 2), what is the expected time 
in college (i.e., states 1 and 2)?  To obtain full credit for this part, you must obtain the 
answer by first computing the fundamental matrix N for this problem (which will also be 
needed for part c).   

[HINT: N is a 2×2 matrix, and A = 
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






−

−
− ac

bd
bcad

1  .] 

 
c) For a student taking intro courses, what is the probability of eventually leaving college 
without a degree (reaching state 3) and the probability of eventually obtaining a college 
degree (reaching state 5)?  For a student taking advanced courses, what is the probability 
of leaving without a degree (reaching state 3) and the probability of obtaining a college 
degree (reaching state 5)?  To obtain full credit for this part, you must show how to 
derive the answer from the computation N*R (where N is the fundamental matrix and R 
is one of the submatrices when the transition matrix is specified in canonical form).    
 
d) Over the long run, for individuals who leave college without a degree, what proportion 
of their worklife will they be unemployed?  For individuals who obtain a degree, what 
proportion of their worklife will they be unemployed? 
 
e) Suppose the process is modified so that unemployed individuals without a college 
degree sometimes return to college (taking introductory courses).  Redo part (a).  How 
does this modification of the process change your answer to part (d)?    



4) [40 points] A population (partitioned into 20-year age classes) has the Leslie matrix 
below. (Recall the demography convention that L(i,j) reflects population flow to age class 
i from age class j.)  The eigenvectors and eigenvalues of this matrix are also reported. 
 
>> L % Leslie matrix 
 
L = 
 
         0    1.5000    0.6000         0         0 
    0.9500         0         0         0         0 
         0    0.9500         0         0         0 
         0         0    0.8500         0         0 
         0         0         0    0.7000         0 
 
>> [eigvec, eigval] = eig(L) 
 
eigvec = 
 
         0         0   -0.4519   -0.0563   -0.7330 
         0         0    0.4710    0.1216   -0.5153 
         0         0   -0.4908   -0.2628   -0.3623 
         0    0.0000    0.4577    0.5082   -0.2279 
    1.0000   -1.0000   -0.3515   -0.8091   -0.1181 
 
eigval = 
 
         0         0         0         0         0 
         0         0         0         0         0 
         0         0   -0.9116         0         0 
         0         0         0   -0.4396         0 
         0         0         0         0    1.3512 
 
 
Compute the following: 
 
a) the probability of survival to each age class (from birth)  
b) expected number of (20-year) periods remaining for each age class  
c) gross reproduction rate (GRR) and net reproduction rate (NRR)  
d) equilibrium growth factor  
e) equilibrium age distribution (as a probability vector)  
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Soc 376  Exam 1  Spring 2013  SOLUTIONS 
 
1a) [5 pts]  No, you cannot specify the states of the process as “dirty” and “clean.”  The 
transition probabilities given a dirty room depend on the number of days the room has 
been dirty.  Thus, there is too much history dependence for a 2-state specification. 
 
b) [15 pts]  Because history dependence extends back 3 periods, and there are 2 possible 
outcomes (dirty or clean) each day, you could specify a chain with 23 = 8 states.  
However, it is possible to “lump” some of these states to obtain a chain with only 4 
states.  One possible specification is 
 

state 1: room was clean the day before (--C) 
state 2: room has been dirty for one day (-CD) 
state 3: room has been dirty for two days (CDD) 
state 4: room has been dirty for three days (DDD) 

 
(Note that the outcomes indicated by the dashes don’t affect the probabilities of 
transitioning out of the state.)  The transition diagram is 
 
 1 
 
 .8 
 .5 
 
  --C  -CD  CDD  DDD 
        .3   .7  .5 .2 
 

and the transition matrix is     





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



0001
2.008.
05.05.
007.3.

 

 
c) [5 pts]  P2(1,1) = [.3 .7 0 0] * [.3 .5 .8 .1]′ = .3 * .3 + .7 * .5 = .44 
 
d) [10 pts]  Yes, the matrix is primitive.  Give that the matrix is irreducible (every state 
can reach every other state), the matrix is primitive if you can find two cycles whose 
lengths are relatively prime.  Here, the loop at node 1 suffices (because a loop is a cycle 
of length 1 and irreducibility guarantees other longer cycles).  Primitivity implies that the 
process has a unique limiting distribution x given by the solution to x = xP.     

 
e) [15 pts]  The condition x = xP can be written as the equations x(1) = .3x(1) + .5x(2) + 
.8x(3) + x(4)  and x(2) = .7x(1) and x(3) = .5x(2) and x(4) = .2x(3).  Note that x is a 
probability vector so that x(1)+x(2)+x(3)+x(4) = 1.  Substitution into this equation yields 
x(1)+.7x(1)+.35x(1)+.07x(1) = 1.  Hence x(1) = 1 / 2.12 = .4716 (= proportion of days 
with a clean room) and x(4) = .07x(1) = .0330 (= proportion of days the parent yells).     
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2a) [10 pts]  We can write the limiting distribution as x = [p 1-p] where p is the 
proportion of time the Republicans hold office.  Note that p = p (1-4ε2) + (1-p)ε .  
Assuming ε > 0, we thus obtain p = 1 / (1+4ε). 
 
b) [10 pts]  Adopting Young’s terminology, the present model displays “local 
conformity” (the office is typically held by one party for a long time), “global diversity” 
(one office might be held by a Democrat for a long time while another office has been 
held by a Republican for a long time), and “punctuated equilibria” (occasionally, there is 
an abrupt jump from one party to the other). 
 
c) [15 pts]  The result from part (a) indicates that p → 1 as ε → 0.  Thus, if ε is positive 
but extremely small, Republicans almost always (and Democrats almost never) hold 
office over the long run.  In contrast, if ε = 0, whichever party initially held office will 
retain the office forever.  [Note that the computation in part (a) entailed division by ε, so 
the result doesn’t hold if ε = 0.]   
 
Standard game theory (which assumes that players always choose best responses) offers 
no way to assess whether one Nash equilibrium of a coordination game is more likely to 
occur than another Nash equilibrium of that game.  By introducing rare “mistakes” 
(occurring with probability ε) into player’s choices, Young shows that some equilibria 
may be stochastically state (occurring with positive probability as ε → 0) while other 
equilibria may not be stochastically stable (occurring with probability p → 0 as ε → 0).   
 
One interpretation of the present problem is that the incumbent party is kicked out of 
office only if it makes a rare “mistake.”  Republicans are twice as likely to make one 
mistake (probability 2ε versus ε), but more importantly it takes two mistakes to kick out 
the Republicans but only one mistake to kick out the Democrats.  When the probability of 
mistakes is extremely small, the probability of D→R is much larger than R→D, and 
hence the Democrats almost never hold office. 
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3a) [18 pts]  Two states are in the same communication class if they can reach and be 
reached by each other.  For this problem, the communication classes are {1,2}, {3,4}, and 
{5,6}.  The reduced transition diagram is 
 
          {3,4}                 {1,2}     {5,6} 
 
Thus, class {1,2} is open and classes {3,4} and {5,6} are closed. 
 
b) [20 pts]  Essentially, the closed classes act as absorbing states.  Thus, the Q matrix 
(reflecting transitions from states in the open class to states in the open class) is given by 
the first two rows and columns of the full transition matrix, and we obtain 
 

Q = 







5.1.
3.4.

 ,  I-Q = 







−

−
5.1.
3.6.

 , and  N = (I-Q)-1 = 







6.1.
3.5.

27.
1   = 








22.237.
11.185.1

 

 
Thus, a student taking intro courses can expect to spend 2.96 periods in college (sum of 
first row of N), and a student taking advanced courses can expect to spend 2.59 periods in 
college (sum of second row of N). 
 
c) [15 pts]  For this problem, R is the submatrix reflecting transitions from states in the 
open class (1,2) to the states in the closed class (3, 4, 5, 6).    
 

 NR =   







22.237.
11.185.1









04.00
0003.

 =  







0888.0111.
0444.0555.

 

 
Thus, a student taking intro courses (state 1) will eventually leave college without a 
degree (enter state 3) with probability .555, and will eventually leave college with a 
degree (enter state 5) with probability .444.  In contrast, a student taking advanced 
courses (state 2) will eventually leave without a degree (enter state 3) with probability 
.111 and will leave with a degree (enter state 5) with probability .888. 
 
d) [10 pts]  We can write the limiting distribution as x = [1-p  p] where p is the 
probability of unemployment.  For those without degrees, p is determined by the equation 
p = .3(1-p) + .5p and hence p = 3/8 = .375.  For those with degrees, p is determined by  
the equation p = .2(1-p) +.3p and hence p = 2/9 = .222.   
  
e) [12 pts]  The classes are now {1, 2, 3, 4} and {5, 6}.  The reduced transition diagram is 
now {1, 2, 3, 4} → {5, 6}.  Thus, {1, 2, 3, 4} is open and {5, 6} is closed.  In the long 
run, all individuals have a college degree and spend essentially all of their (infinite) 
lifetime bouncing between states 5 and 6.  Thus, they are unemployed 22% of the time.   
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[Comment on question 3: If you had access to Matlab, you could have found answers to 
parts (c) and (d) and (e) from the computations below.  But the point was to find the 
answers efficiently without Matlab.]  
 
>> P  % for parts a through d 
 
P = 
    0.4000    0.3000    0.3000         0         0         0 
    0.1000    0.5000         0         0    0.4000         0 
         0         0    0.7000    0.3000         0         0 
         0         0    0.5000    0.5000         0         0 
         0         0         0         0    0.8000    0.2000 
         0         0         0         0    0.7000    0.3000 
 
>> P^1000 
 
ans = 
    0.0000    0.0000    0.3472    0.2083    0.3457    0.0988 
    0.0000    0.0000    0.0694    0.0417    0.6914    0.1975 
         0         0    0.6250    0.3750         0         0 
         0         0    0.6250    0.3750         0         0 
         0         0         0         0    0.7778    0.2222 
         0         0         0         0    0.7778    0.2222 
 
>> P % for part e, with 10% chance of moving from state 1 from state 4 
 
P = 
    0.4000    0.3000    0.3000         0         0         0 
    0.1000    0.5000         0         0    0.4000         0 
         0         0    0.7000    0.3000         0         0 
    0.1000         0    0.5000    0.4000         0         0 
         0         0         0         0    0.8000    0.2000 
         0         0         0         0    0.7000    0.3000 
 
>> P^1000 
 
ans = 
    0.0000    0.0000    0.0000    0.0000    0.7778    0.2222 
    0.0000    0.0000    0.0000    0.0000    0.7778    0.2222 
    0.0000    0.0000    0.0000    0.0000    0.7778    0.2222 
    0.0000    0.0000    0.0000    0.0000    0.7778    0.2222 
         0         0         0         0    0.7778    0.2222 
         0         0         0         0    0.7778    0.2222 
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4a) [10 pts] 
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b) [10 pts] 
 









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



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
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+
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1
7.1

7.*85.85.1
7.*85.*95.85.*95.95.1

7.*85.*95.*95.85.*95.*95.95.*95.95.1

= 























1
70.1
44.2
32.3
16.4

 

 
c) [10 pts] 
 

GRR = 1.5 + .6 = 2.1 
NRR = 1.5 * .95 + .6 * .95 * .95 = 1.9665 

 
d) [5 pts]  The equilibrium growth factor is 1.3512, equal to the dominant eigenvalue of 
the Leslie matrix. 
 
e) [5 pts]  The equilibrium age structure is the eigenvector associated with the dominant 
eigenvalue, normalized to become a probability vector. 
 























−
−
−
−
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1181.
2279.
3623.
5153.
7330.

/ (-1.9566) = 


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
















0603.
1164.
1851.
2633.
3746.

 

 
   



Sociology 376  Exam 2 Spring 2013  Prof Montgomery 
 
Answer all questions.  210 points possible. 
 
1) [75 points]  Consider a large population in which each individual decides to either attend or 
not attend a public event.  Each individual is characterized by her threshold level – the 
attendance rate above which she will attend (and below which she won’t attend).  Assume that 
individuals have adaptive expectations, so that last period’s actual attendance becomes this 
period’s expected attendance. 
 
a) Suppose that threshold levels are uniformly distributed between 0.2 and 0.6.  That is, the 
probability distribution function (pdf) for thresholds is given by 
 

 𝑓(𝑥)  = �2.5     𝑓𝑜𝑟 𝑥 ∈  [0.2, 0.6]
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

  
 
State the generator function giving xt+1 (attendance rate in period t+1) as a function of xt 
(attendance rate in period t).  Draw the cobweb diagram.  Determine the steady state(s) and the 
stability of each state.  [NOTE: Your cobweb diagram doesn’t need to be perfectly to scale, but 
does need to be well labeled, and indicate numerically the “kink points” of the generator 
function.  Your generator function should be well specified for all values of x between 0 and 1.  
You should give numerical answers for the values of the steady states.] 
 
b) The thresholds described in part (a) can be understood as “lower thresholds” above which 
individuals become willing to attend.  To capture overcrowding effects – the event becomes less 
enjoyable if too many people attend – we might further suppose that each individual also has an 
“upper threshold” above which she will no longer attend.  (Thus, an individual doesn’t attend if x 
is below her lower threshold, does attend if x is between her lower and upper threshold, and 
doesn’t attend if x is above her upper threshold.)  Suppose that the pdf for lower thresholds is 
given by f(x) in part (a), and that upper thresholds are uniformly distributed between 0.5 and 2.5, 
so that the pdf for upper threshold is given by 
 

 𝑔(𝑥)  =  �0.5    𝑓𝑜𝑟 𝑥 ∈  [0.5, 2.5]
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 
 
State the generator function giving xt+1 (attendance rate in period t+1) as a function of xt 
(attendance rate in period t).  Draw the cobweb diagram.  Determine the steady state(s) and the 
stability of each state.  [NOTE:  Same note as for part (a).] 
 
c) Suppose that the pdf for lower thresholds is again given by f(x) in part (a).  But in place of the 
pdf given by g(x) in part (b), suppose that all individuals have an upper threshold of 0.8 (i.e., 
every individual would not attend if expected attendance exceeds 80%).  Draw the cobweb 
diagram (taking care to properly label the diagram and indicate numerical “kink points”).  What 
happens to attendance in the long run?  Does your answer depend on the initial condition?  
Briefly explain. 
 
  



2) [115 points]  One version of the predator-prey model is specified as 
 
 ΔP  =  [a – e P – b Q] P h 
 
 ΔQ  =  [– c + d P – f Q] Q h 
 
where P is the size of the prey population, Q is the size of the predator population, and the 
parameters (a, b, c, d, e, f, h) are all positive.  Following our classroom notation, h can be 
interpreted as period length.   
 
a) Solve for the P nullcline(s) and the Q nullcline(s).  Plot these nullclines under the assumption 
that a/e < c/d.  Then add arrows to indicate the dynamics in each region of the (positive quadrant 
of the) phase diagram.  [NOTE:  You should place P on the horizontal axis and Q on the vertical 
axis.  Your graphs don’t need to be perfect, but should be well labeled and qualitatively correct 
and indicate horizontal intercepts of the nullclines.  You can restrict attention to the positive 
quadrant because the context presumes that both P and Q are non-negative.] 
 
b) Suppose an initial condition with P relatively large and Q relatively small but positive.  (More 
precisely, suppose that  [–(c/f) + (d/f) P] > Q > 0.)  Assuming h is small, what trajectory do these 
populations follow over time?  What is the long-run equilibrium?   
 
c) Now consider this model when a = 5, c = 3, b = d = e = f = 1, and h = 0.5.  Plot the nullclines 
and add arrows to indicate dynamics in each region of the (positive quadrant of the) phase 
diagram.  [HINT:  These parameter values imply that a/e > c/d, in contrast to part (a).] 
 
d) Given the parameter values from part (c), what are the steady state(s)?  Based on the arrows, 
can you determine stability of these state(s)?  Briefly discuss. 
 
e) Given the parameter values from part (c), find the Jacobian matrix.  Then use this matrix to 
assess the stability of the steady state(s).  [HINTS:  You should first rewrite the equations so 
they’re in the form Pt+1 = F(Pt, Qt) and Qt+1 = G(Pt, Qt).  You can then find the elements of the 
Jacobian matrix using either calculus or non-calculus approaches.  It will then help to know that  
 

 the matrix 







dc
ba

 has eigenvalues  λ1 = (1/2)(a + d + sqrt(a2
 + 4bc – 2ad + d2))  

         λ2 = (1/2)(a + d – sqrt(a2
 + 4bc – 2ad + d2))    

 
 and, for any complex number a+bi (where i = sqrt(-1)), abs(a+bi) = sqrt(a2+b2).      ] 
 
 
3) [20 points]  In question 2 above and throughout the second half of the course, we have often 
included a parameter h reflecting period length.  Why is this necessary?  What sorts of behaviors 
arise in one-dimensional and two-dimensional non-linear models when h is relative large that 
don’t arise when h is very small?  Give some examples from the course. 
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Sociology 376  Exam 2 Spring 2013  Solutions 
 
1a) [25 pts]  The generator function is the cumulative distribution function (cdf) of thresholds: 
 

 F(x)  =  �
0                     𝑓𝑜𝑟 𝑥 <  0.2         
2.5𝑥 − 0.5    𝑓𝑜𝑟 𝑥 ∈  [0.2, 0.6]
1                     𝑓𝑜𝑟 𝑥 >  0.6         

 

 
Plotting F(x) against the 45-degree line, we obtain the cobweb diagram: 
 

 
 
The diagram reveals stable equilibria at x* = 0 and x* = 1, and an unstable equilibrium at x* = 
1/3.  (An equilibrium is stable iff the absolute value of the slope of the generator function is less 
than one.  The interior equilibrium is determined by 2.5x* – 0.5 = x* which implies x* = 1/3.) 
 
b) [35 pts]  The cdf for upper thresholds is given by 
 

 G(x)  =  � 0                      𝑓𝑜𝑟 𝑥 < 0.5
0.5𝑥 − 0.25   𝑓𝑜𝑟 𝑥 ≥ 0.5 

 
and hence the generator function is given by 
 

 F(x) – G(x)  =  

⎩
⎪
⎨

⎪
⎧ 0                   𝑓𝑜𝑟 𝑥 < 0.2     

2.5𝑥 –  0.5          𝑓𝑜𝑟 𝑥 ∈ [0.2, 0.5]
2𝑥 – 0.25           𝑓𝑜𝑟 𝑥 ∈ [0.5, 0.6] 
−0.5𝑥 + 1.25      𝑓𝑜𝑟 𝑥 > 0.6              
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Plotting the generator function against the 45-degree line, we obtain the cobweb diagram: 
 

 
 
The equilibria are x* = 0 (stable), x* = 1/3 (unstable), and x* = 5/6 (stable).  (The latter 
equilibrium is determined by the condition -0.5x* + 1.25 = x*, and is unstable because the slope 
of the generator function is –0.5, which is less than 1 in absolute value.) 
 
c) [15 pts]  From the cobweb diagram, x* = 0 is the only stable equilibrium.  Almost every initial 
condition (the unstable equilibria x* = 1/3 and x* = 0.8 are exceptions) lies on a trajectory that 
leads ultimately to zero attendance.  For x0 < 1/3, attendance will fall monotonically to 0.  For  
x0 > 1/3, attendance will rise until it exceeds 0.8, and then fall to 0 the next period (and remain at 
0 thereafter). 
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2a) [30 pts]  The P-nullclines are determined by the condition ΔP = 0 which implies 
 
 Q = (a/b) – (e/b) P    or P = 0  (i.e., the vertical axis is a P-nullcline) 
 
The Q-nullclines are determined by the condition ΔQ = 0 which implies 
 
 Q = –(c/f) + (d/f) P    or Q = 0  (i.e., the horizontal axis is a Q-nullcline) 
 
Dynamics in each region of the phase diagram are given by 
 
 ΔP > 0  implies  Q  <  (a/b) – (e/b) P 
 ΔQ > 0  implies  Q  <  –(c/f) + (d/f) P 
 
Graphically,   
 
        Q ΔP = 0 
 
 
ΔP = 0 

           ΔQ = 0 
 
 
 
 
 
 
 
 ΔQ = 0 
 a/e c/d  P 
 
 
 
b) [10 pts]  Given an initial condition with high P and low Q (i.e., a point in the lower right area 
of the phase diagram), P would fall and Q would initially rise.  Once the trajectory crosses the Q-
nullcline, both P and Q would fall.  The population will eventually converge to the (unique, 
stable) equilibrium with P* = a/e and Q* = 0.  Intuitively, there aren’t enough prey to support a 
predator population, and the prey population rises to the carrying capacity of the environment. 
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c) [23 pts]  The P-nullcline is now Q = 5 – P, and the Q-nullcline is now Q = –3 + P.  The phase 
diagram is plotted below.   
 

 
 
 
d) [12 pts]  Recalling that the vertical axis is a P-nullcline and the horizontal axis is a Q-
nullcline, there are three equilibria: (P* = 0, Q* = 0), (P* = 5, Q* = 0) and (P* = 4, Q* = 1).  
From the phase diagram, it is clear that the first two equilibria are unstable.  At (P* = 0, Q* = 0), 
a small increase in P would cause P to rise further.  At (P* = 5, Q* = 0), a small increase in Q 
would cause Q to rise further.  For the interior equilibrium (P* = 4, Q* = 1), it is clear that 
trajectories will spiral around the equilibrium, but you can’t tell from the phase diagram whether 
this equilibrium is stable (with trajectories spiraling inward) or unstable (with trajectories 
spiraling outward). 
 
e) [40 pts]  You can rewrite the equations (from “delta form”) as 
 
 Pt+1  =  F(Pt, Qt)  =  Pt + [5 – Pt – Qt ]  Pt (0.5)  =  3.5 Pt – 0.5 Pt

2 – 0.5 Pt Qt 
 
 Qt+1  =  G(Pt, Qt)  =  Qt + [–3 + Pt – Qt] Qt (0.5)  =  – 0.5 Qt + 0.5 Pt Qt – 0.5 Qt

2  
 
Using the non-calculus approach to obtain the elements of the Jacobian matrix, suppose the 
system is initially in equilibrium, and there is a very small shock in period t.  Let pt and qt denote 
the deviations from steady state in period t.  Given Pt = P* + pt and Qt = Q* + qt, we obtain 
 
 P* + pt+1  =  3.5 (P* + pt) – 0.5 (P* + pt)2 – 0.5 (P* + pt) (Q* + qt) 
 
 Q* + qt+1  =  –0.5 (Q* + qt) + 0.5 (P* + pt) (Q* + qt) – 0.5 (Q* + qt)2 
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Simplification (from the definitions of equilibrium and the fact that any second-order terms pt
2 or 

qt
2 or ptqt are so small they can be ignored) ultimately yields 

 

 �
𝑝𝑡+1
𝑞𝑡+1�  =  �3.5 − 𝑃∗ − 0.5 𝑄∗ − 0.5 𝑃∗

0.5 𝑄∗ −0.5 +  0.5 𝑃∗  −  𝑄∗�  �
𝑝𝑡
𝑞𝑡�   

 
where the (2×2) matrix is the Jacobian matrix.  Using calculus, you could have found the 
Jacobian matrix directly as 
 

 J  =  �𝜕𝐹/𝜕𝑃 𝜕𝐹/𝜕𝑄
𝜕𝐺/𝜕𝑃 𝜕𝐺/𝜕𝑄�  =   �

3.5 − 𝑃 − 0.5 𝑄 −0.5 𝑃
0.5 𝑄 −0.5 +  0.5 𝑃 –  𝑄

� 

 
In order to assess stability, you need to evaluate J at the equilibrium (P*, Q*) under 
consideration, and then compute the eigenvalues.  The equilibrium is stable if the absolute value 
of the leading eigenvalue is less than 1. 
 
For this problem, there are three equilibria to consider: 
 
 (P* = 4, Q* = 1)  implies  J = �−1 −2

0.5 0.5�  implies  λ = – 0.25 ± 0.66 i 
 
 (P* = 5, Q* = 0) implies  J = �−1.5 −2.5

0 2 �  implies  λ = 0.25 ± 1.75 
 
 (P* = 0, Q* = 0) implies  J = �3.5 0

0 −0.5�  implies λ = 1.5 ± 2 
 
Because abs(– 0.25 ± 0.66 i) = 0.706 which is less than 1, the first equilibrium is stable.   
Because abs(2) > 1, the second equilibrium is unstable.  Because abs(3.5) > 1, the third 
equilibrium is unstable. 
 
3) [20 pts]  To minimize use of calculus, our class has focused on “discrete-time” models in 
which state variables are updated at discrete time steps (t, t+1, t+2, …).  Arguably, some social 
processes are better specified using “continuous-time” models in which state variables change 
continuously through time.  By introducing the period-length parameter h, and then setting h 
relatively small, we can approximate continuous-time dynamics using a discrete-time model. 
 
Phase diagrams (which include arrows to indicate direction of flow) often provide a good guide 
to assess stability of steady states in continuous-time models, but can be misleading for discrete-
time models.  In one-dimensional continuous-time models, trajectories will flow smoothly into 
stable steady states, and cycles (or chaos) are not possible.  In contrast, for one-dimensional 
discrete-time models, trajectories can “jump over” steady states, and the model can display 
cycles or chaotic dynamics.  (Consider the logistic population model studied in class.)  In two-
dimensional models, a steady state which would be stable in continuous time may be unstable in 
discrete time.  (Consider the Homans-Simon or predator-prey models studied in class.) 
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